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STUDY OF THE STABILITY AND DRAG AT MACH NLTMBERS 

FROM 4.5 TO 13.5 OF A CONICAL 

VENUS -ENTRY BODY 

By Peter  F.  I n t r i e r i  
Ames Research Center 

An experimental study has been conducted t o  determine the  s t a t i c  and 
dynamic s t a b i l i t y  and drag cha rac t e r i s t i c s  of a conical-nosed planetary-entry 
vehicle i n  a gas mixture composed of 9-percent carbon dioxide and 91-percent 
nitrogen and in air  at Mach numbers of 4.5, 9.0, and 13.5 and Reynolds numbers 
from 0 .4  t o  1 .2  mil l ion.  It w a s  determined t h a t  f o r  the  assumed center-of- 
gravi ty  location, the  configuration i s  s t a t i c a l l y  and dynamically s tab le  at 
a l l  Mach numbers and throughout t he  angle-of -attack range of t he  invest igat ion 
and t h a t  it exhibi ts  the  same s t a t i c  s t a b i l i t y ,  dynamic s t a b i l i t y ,  and drag i n  
a i r  as it does i n  the  nitrogen--carbon-dioxide mixture. The s t a t i c  s t a b i l i t y  
i s  invariant with Mach number and nonlinear with angle of a t tack .  The non- 
l i nea r  var ia t ion  of pitching moment with angle of a t tack  w a s  c losely approx- 
imated by a two-term power s e r i e s  of the  resu l tan t  angle of a t tack .  The 
dynamic s t a b i l i t y  i s  invariant with Mach number and angle of a t tack .  The drag 
coeff ic ient  of the  configuration i s  e s sen t i a l ly  invariant with Mach number and 
increases with increasing angle of a t tack .  The s t a t i c  s t a b i l i t y  and drag were 
closely predicted by Newtonian theory.  

Strong experimental evidence i s  presented which shows t h a t  the  configura- 
t i o n  i s  s t a t i c a l l y  s tab le  only about a nose-forward t r i m  a t t i t ude  of zero 
angle of a t tack and dynamically s tab le  about t h i s  unique s tab le  a t t i t ude  f o r  
a l l  amplitudes of o sc i l l a t ion .  

Calculations which use the  measured s t a b i l i t y  r e s u l t s  t o  describe the  
osc i l la tory  behavior of a fu l l - sca l e  vehicle f ly ing  an example entry t r a j e c  - 
t o r y  through a model of the  Venus atmosphere indicate  t h a t  t he  s t a b i l i t y  char- 
a c t e r i s t i c s  of the  present configuration should be adequate f o r  or ient ing the  
vehicle properly during a Venus entry.  For a l l  i n i t i a l  or ientat ions of the  
vehicle (nose forward or base forward) the  pitching motions should converge t o  
a very s m a l l  f r ac t ion  of the  amplitude at entry.  

INTRODUCTION 

In  the  design of vehicles intended t o  en ter  planetary atmospheres, two 
important goals are  t o  provide f o r  minimum aerodynamic heating and f o r  ade- 
quate aerodynamic s t a b i l i t y  of the  vehicle during entry.  For e n t r i e s  in to  the  
Ear th ' s  atmosphere a t  ve loc i t i e s  w e l l  in excess of escape veloci ty ,  
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reference 1 has shown t h a t  t he  t o t a l  heating w i l l  be l e s s  f o r  sharp entry 
bodies, such as pointed cones, than f o r  blunt bodies. Radiative heating which 
becomes the  dominant mode at these speeds depends on the  veloci ty  normal t o  
the  bow-shock wave ra ther  than on the  free-stream veloci ty;  therefore ,  the  
combined rad ia t ive  and convective heating w i l l  be d r a s t i c a l l y  reduced if the  
entry bodies have highly swept bow-shock waves. 
the  nitrogen--carbon-dioxide atmospheres of Venus and Mars, the  radiat ive 
i n t e n s i t i e s  w i l l  be s ign i f i can t ly  grea te r  than i n  a i r .  The advantages of 
using conical entry bodies t o  reduce t o t a l  heating i n  these atmospheres are  
shown by the  analysis  of reference 3. 

Reference 2 indicates  t h a t  i n  

Having establ ished the  d e s i r a b i l i t y  of conical  shapes from heating 
considerations, it must be ascertained, f o r  a passive system, t h a t  the  s t a b i l -  
i t y  of such vehicles  f ly ing  i n  the  N2-C02 atmospheres w i l l  be adequate t o  
insure proper or ien ta t ion  of i t s  heat shield during the  entry,  and, i n  pa r t i c -  
u l a r ,  t h a t  the  veh ic l e ' s  dynamic s t a b i l i t y  w i l l  be suf f ic ien t  t o  prevent 
divergent o sc i l l a t ions  which could r e s u l t  i n  a mission f a i l u r e .  A l s o ,  since 
the  const i tuents  of t he  planetary atmospheres through which these vehicles 
must descend are  known only within ce r t a in  limits ( see, e .g., r e f .  4), it i s  
important t o  determine whether the  aerodynamic charac te r i s t ics  of the  vehicle 
are  sensi t ive t o  changes i n  gas composition and whether these charac te r i s t ics  
can be predicted s a t i s f a c t o r i l y  . 

The s t a t i c  and dynamic s t a b i l i t y  and drag charac te r i s t ics  of a conical 
configuration were investigated i n  the  prototype of the  Ames Hypervelocity 
Free-Flight F a c i l i t y  at nominal Mach numbers of 4.5, 9.0, and 13.3 and at 
Reynolds numbers of 0.4, 0.8, and 1.2 mill ion,  respectively,  based on f r ee -  
stream conditions and model diameter. The models were t e s t ed  i n  a gas mixture 
composed of 9-percent carbon dioxide and 91-percent nitrogen (by volume) and 
a l so  i n  a i r .  Two exploratory f l i g h t s  were a l s o  made with the  models launched 
backward t o  determine whether they would remain f ly ing  backward or, as 
expected from calculat ions,  would begin r ight ing themselves t o  a nose-forward 
a t t i t u d e .  Theoretical  estimates of s t a t i c  s t a b i l i t y  and drag were made and 
compared with the  experimental r e s u l t s .  

SYMBOLS 

A reference area,  maximum body cross-sectional area,  meters' 

Cl a rb i t r a ry  constant i n  equation 

CD 
t o t a l  drag 

drag coef f ic ien t ,  > 
(LA 

drag coef f ic ien t  at zero angle 
7 2 .C.L 

@O 

(10) 

dimensionless 

of a t tack  

, dimensionless l i f t  coef f ic ien t  , - 
l i f t -curve  slope, per  radian 

I L L  b 

%A 
CL 

cLa 



Cm 
i tching moment pitching-moment coef f ic ien t ,  , dimensionless 

%M 

pitching-moment -curve slope, per radian %a 

, per radian ac, + 3% + c  Cmq m& damping - in  -pitch der ivat ive , a( Sd/V 1 a( a / v  1 

h 

k 

K 

q 

s, 
R 

Re 

t 

reference diameter, max i "  body diameter, cm 

average gravi ta t iona l  acceleration within the  atmosphere of a 
planet, m/sec2 

a l t i t ude  above planet surf ace, km 

moment of i n e r t i a  about a transverse ax is  through the center of 
gravi ty ,  kg -m2 

constant i n  equation (1) 

dynamic-stability parameter f o r  variable density (eq.  (11) ),  
dimensionless 

constants i n  equation (2), deg 

mass of model, gm 

Mach number, dimensionless 

restoring-moment coef f ic ien ts ,  defined by equation ( A l )  

restoring-moment coef f ic ien ts ,  defined by equation (A4) 

integer denoting number of complete tumbles of vehicle 

roll parameter , roll ra te/veloci ty  , radians/m 

s t a t i c  pressure,  newtons/m2 

angular pitching veloci ty ,  radians/sec 

free-stream dynamic pressure,  newtons/m2 

gas constant f o r  atmospheric gas mixture, - , m2/sec2 OK 

Repolds  number based on free-stream gas propert ies  and maxi" 

PT 

diameter, dimensionless 

time 
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T 

U 

v 
X 

cg X 

Y 

Z 

a 

P 

Pv 

Y 

E 

€P 

71'72 

@,If 
A 

5 

P 

U 

gas temperature, OK 

horizontal  component of f l i g h t  veloci ty ,  m/sec 

veloci ty  along f l i g h t  path, m/sec 

distance along f l i g h t  path, m 

a x i a l  distance from model nose t o  center-of -gravity posit ion,  em 

horizontal  coordinate normal t o  the  f l i g h t  path, m 

coordinate normal t o  the  f l i g h t  path and y ax is ,  m 

angle of a t tack  (angle between model ax i s  and resu l tan t  wind d i r ec -  
t i o n  projected onto the  v e r t i c a l  p lane) ,  deg 

angle of s ides l ip  (angle between model ax i s  and resu l tan t  wind 
d i rec t ion  projected onto the  horizontal  plane),  deg 

reciprocal  of atmospheric scale height,  & , per m 

f l i g h t  -path angle (referenced t o  the l o c a l  horizontal)  , deg 

dependent var iable ,  - 5 + nfl, deg 

value of E at  the  f i r s t  peak of o sc i l l a to ry  motion 

damping exponents i n  equation (2), m - l  

a t t i t ude  coordinates of the  model r e l a t i v e  t o  Earth-fixed axis,  deg 

wave length of pitching osc i l l a t ion ,  m/cycle 

dynamic - s t a b i l i t y  parameter f o r  constant a l t i t ude  (eq .  ( 5 )  ) , dimen- 
s ionle s s 

atmospheric densi ty  , kg/m3 

resu l tan t  angle of a t tack,  t a n - l d t a n 2  a + tan2 P , deg, or transverse 
2 

radius of gyration, $ , when used i n  parameter (%) i n  equa- 

t i o n s  ( 5 ) ,  ( 8 ) ,  and (11) and i n  t ab le  I, m 

maximum resu l tan t  angle of a t tack ,  deg 

minimum resu l tan t  angle of a t tack,  deg 

%-" 

W 

root -mean-square resu l tan t  angle of a t tack ,  J J ' ~ ~  - dx, deg 

frequency, r d i a n s / s e c  
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cg 

env 

i 

max 

min 

0 

co 

r a t e  of ro ta t ion  of complex vectors which generate the  model pitching 
motion (eq .  ( 2 )  ) , radians/m 

f i r s t  der ivat ive with respect t o  time 

second der ivat ive with respect t o  time 

Subscripts 

center of gravi ty  

envelope 

i n i t i a l  condition 

maximum 

minimum 

conditions a t  surf ace of planet 

f r e e  -stream conditions 

CONFIGURATION 

The configuration selected had a 30' half-angle cone forebody. This 
forebody, as  i s  shown i n  references 1 and 3, i s  close t o  the  optimum cone 
angle f o r  minimizing t o t a l  heating at ve loc i t i e s  well  above escape ve loc i ty .  
The afterbody geometry was selected by the  requirement t ha t  the configuration 
be s table  only with the  30' half-angle cone pointed forward. This requirement 
was f u l f i l l e d  by the  addition of a short cylinder and a rearward pointing cone 
t o  the  base of the  forebody. The cylinder length of 0.125 model diameter and 
the  rearward pointing cone half-angle of 48' were selected t o  provide a coin- 
cident center -of -pressure location f o r  both base -forward and nose -f orward 
f l i g h t  of the vehicle and a l s o  t o  provide usefu l  volume. 
sketch of a model of t h i s  configuration, giving per t inent  nominal dimensions. 

Figure 1( a)  i s  a 

DESCRIPTION OF TESTS 

Test Technique and Test Conditions 

The t e s t s  were performed i n  the  prototype of the  Ames Hypervelocity Free- 
F l igh t  F a c i l i t y  by launching models from a deformable-piston, l ight-gas  g u n  of 
12.7 mm bore ( r e f .  5 )  i n to  a quiescent mixture composed of 9-percent carbon 
dioxide and 91-percent nitrogen (by volume), and in to  s t i l l  air  at ambient 
temperature. Nominal model ve loc i t i e s  of 1.52, 3.05, and 4.72 km/sec were 
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obtained corresponding t o  nominal Mach numbers of 4.5, 9.0, and 13.5, respec- 
t i v e l y .  
through the  t e s t  section, with the  given spacing of shadowgraph s ta t ions  (see 
below), t h e  ambient tes t - sec t ion  pressure w a s  s e t  a t  k104 newtons/m2 (300 mm 
of mercury), t o  give t h e  desired wave length of o s c i l l a t i o n .  
Reynolds numbers are shown i n  t a b l e  I, which l i s t s  the  average values of Mach 
number, Reynolds number, and t e s t  gas f o r  each f l i g h t .  G a s  samples taken 
immediately p r i o r  t o  each f i r i n g  i n  the  Nz-C02 mixture were analyzed f o r  chem- 
i c a l  content on a m a s s  spectrograph and were found t o  contain the  desired con- 
centrat ion of C02 and N2 within 1 percent,  with only t r ace  amounts of other 
const i tuents  . 

In order t o  obtain adequate def in i t ion  of the  motions of t he  models 

Corresponding 

The t r a j e c t o r y  of t he  model through the  t e s t  section w a s  recorded by 11 
spark shadowgraph s t a t ions  located a t  1.22-meter i n t e rva l s .  Side and top  
views of the  models were recorded a t  each s t a t i o n .  The shadowgraphs contained 
images of reference wires from which x,y,z,B, and $ coordinates were read. 
The l i nea r  coordinates were measured t o  within 0.0076 cm, and the angles t o  
within 0.25O. The or ien ta t ion  angles 8 and I!J were read r e l a t ive  t o  Earth- 
f ixed axes. No corrections were made f o r  the  angle between the  resul tant  wind 
d i rec t ion  and Earth-fixed axes t o  give values of a, and 0 since, f o r  these 
t e s t s ,  these correct ions were within the  reading accuracy of the  angles 8 
and $. Time of model f l i g h t  between s ta t ions  w a s  recorded with electronic  
chronographs t o  within 0.05 microsecond (0.02 percent of t he  time of f l i g h t  
between s t a t ions  of a model f ly ing  a t  4.72 km/sec). 

Models and Sabots 

Sketches of t he  two types of models used i n  the  present investigation, 
showing per t inent  nominal dimensions, are  presented i n  f igure  1. The a f t e r -  
sections of t he  models shown i n  f igure  l ( a )  were machined from 7075-T6 a h -  
minum; the  f ron t  sect ions of t he  models were machined from a tungsten-iron 
a l loy  (Mallory 3000) t o  obtain a center-of-gravity location of 0.72 d from 
the  nose. 
However, a t  t h e  highest  Mach number ( M  = l3.5), the  heating r a t e s  encountered 
were su f f i c i en t ly  high t o  cause the  models t o  burn i n  f l i g h t .  It was found 
tha t  a t h i n  p l a s t i c  coating over the  models provided a successful heat sh ie ld .  
The coating consisted of a polymer of vinylidene f luoride sprayed onto the  
model surface t o  a thickness of about 0.04 em. The models were remachined and 
trimmed t o  give a f i n a l  coat thickness of about 0.019 em. Figure l ( b )  i s  a 
sketch of the  coated models showing per t inent  nominal dimensions. The a f t e r -  
sections of these plastic-coated models were machined from a t i tanium a l loy  
since the  heat-curing of the  p l a s t i c  w a s  found t o  anneal the  aluminum a f t e r -  
section so t h a t  it deformed severely during the  launch. The strength of the  
t i t a n i u m  a l loy  w a s  not affected by the  curing. Since t i tanium i s  heavier than 
aluminum, the  s ize  of the Mallory f ront  section w a s  adjusted (see f i g .  l ( b ) )  
so t h a t  the  center-of -gravity location of these models, p r io r  t o  being coated, 
w a s  the  same as t h a t  f o r  the  basic models - 0.72 d from the  nose. The amount, 
and consequently the  weight d i s t r ibu t ion ,  of t he  p l a s t i c  used i n  the coating 
w a s  s m a l l ;  therefore ,  t he  locat ion of the  center  of grav i ty  r e l a t ive  t o  any 
point on the  metal model did not change. However, the  distance of the  center 

These models were used i n  the  t e s t s  at Mach numbers of 4.5 and 9 .O.  
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of gravi ty  t o  the  new p l a s t i c  nose of the  coated model w a s  increased by the  
length of p l a s t i c  deposited at the  nose - approximately 0.038 cm. 
of t he  shadowgraph p ic tures  ( f i g .  2) of two of these models i n  f l i g h t  a t  Mach 
number 13.5 shows t h a t  although ablat ion of the  p l a s t i c  occurred during the  
f l i g h t s ,  any change i n  shape, par t icu lar ly  blunting of the t i p ,  w a s  i n s ign i f i -  
can t .  The posi t ion of the  center of gravi ty  f o r  a l l  the  models w a s  measured 
within S O  .OO25 cm accuracy. The dimensions of t he  models varied only s l i gh t ly  
from those shown i n  f igure  1. Some of the  measured physical charac te r i s t ics  
of each model are  l i s t e d  i n  t ab le  I .  

Examination 

Photographs of t he  models and sabots are presented i n  f igure  3 .  
d i f f e ren t  sabot types were used i n  launching the  models: a s t ra ight  sabot 
( f i g .  3 (a ) )  f o r  f l i g h t s  a t  angles of a t tack  below loo, a canted sabot 
( f i g .  3 (b ) )  f o r  f l i g h t s  a t  angles of a t tack  as high as 4 5 O ,  and a sabot f o r  
launching the  models i n  the  base-forward a t t i t ude  ( f i g .  3 ( d ) ) .  
sabot w a s  not always successful i n  producing high angle-of -attack f l i g h t s  and, 
as can be seen i n  t ab le  I, resul ted i n  a large number of l o w  angle-of-attack 
f l i g h t s  i n  the  N2-C02 mixture. Tests using the  canted sabot t o  launch the  
coated models at a Mach number of 13.5 were unsuccessful because the  models 
broke up inside the  gun. The s t r a igh t  sabot w a s  successful i n  obtaining low- 
angle f l i g h t s  at t h i s  Mach number. The sabots were machined from Lexan 
polycarbonate p l a s t i c .  

Three 

The canted 

REDUCTION OF DATA 

Drag 

The determination of drag coeff ic ient  from the  time-distance da ta  w a s  
based on the procedure described i n  reference 6 ,  i n  which a constant drag 
coeff ic ient  i s  assumed. A procedure applicable t o  cases where the  drag coef- 
f i c i e n t  var ies  with angle of a t tack  i s  presented in  reference 7 .  It i s  shown 
i n  t h i s  reference t h a t  if the  drag coeff ic ient  var ies  with the  square of t he  
loca l  resu l tan t  angle of a t tack ,  according t o  the  re la t ion  

the  drag coeff ic ient  obtained by the  method of reference 6, under ce r t a in  
addi t ional  constraints ,  i s  the  drag coeff ic ient  t h a t  would be obtained i n  
steady f l i g h t  a t  a resu l tan t  angle of a t tack  equal t o  the  root-mean-square 
resu l tan t  angle of a t tack ,  arms. Accordingly, t he  present r e su l t s  a re  cor- 
re la ted with arms. 

S t a b i l i t y  Derivatives 

The pitching and yawing motions of t he  models during f r e e  f l i g h t  were 
Examples of the types of analyzed t o  determine the  s t a b i l i t y  der iva t ives .  

motions encountered i n  the  present t e s t s ,  as viewed i n  the  a-p plane, are  
shown i n  f igure  4 .  The angles of a t tack  and s ides l ip  measured from t h e  

7 
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shadowgraphs a t  each s t a t ion  are indicated by the  symbols. The curves show 
the  theo re t i ca l  motions which best  f i t  t he  experimental da ta  and were computed 
by a method which w i l l  be discussed l a t e r  in  t h i s  sect ion.  Since the  models 
are aerodynamically symmetric, the  angular displacement of t he  model, a t  any 
ins tan t ,  can be represented a l so  by the  resu l tan t  angle of a t tack,  0, whose 
orthogonal components are  the  angles a and p.  
t h a t ,  i n  general, the  data  show precessing e l l i p t i c a l m o t i o n s ,  and t h a t  the  
angle range through which the  models o s c i l l a t e  d i f f e r s  f o r  each f l i g h t .  
it should be noted t h a t  t he  models i n  the  t e s t s  a t  Mach numbers of 4.5 and 
9.0 underwent two complete cycles o f  o sc i l l a t ion  ( f i g s .  k ( a ) ,  ( b ) ,  ( e ) ,  and 
( a ) ) ,  whereas the  models i n  the  t e s t s  at Mach number of 13.5, because they 
were heavier (see discussion under Models and Sabots), underwent only one and 
one-half cycles of o sc i l l a t ion  ( f igs .  4(e)  and ( f ) )  . Although one and one-half 
cycles of motion are usually suf f ic ien t  t o  define t h e  desired s t a b i l i t y  deriv- 
a t ives ,  more cycles of well-defined motion w i l l  generally produce b e t t e r  da t a .  

It can be seen i n  f igure  4 

Also, 

S t ab i l i t y  der ivat ives  were obtained from analysis  of the  pitching and 
yawing motions of t he  models. 
and p with x w a s  represented by the  following equation: 

For each f l i g h t ,  t he  measured var ia t ion of a 

+ beiPX 

Equation ( 2 )  i s  the  solution of the l inear  d i f f e r e n t i a l  equation of motion, as 
given i n  reference 8 ,  and includes e f f e c t s  of model spin and trim angle on the  
motion. Some of t he  basic  assumptions used i n  the  development of t h i s  equa- 
t i o n  are:  ax ia l ly  symmetric configuration, l i nea r  var ia t ions  of force and 
moment with angle of a t tack ,  s m a l l  angular displacements, and s m a l l  angles of 
trim. Equation ( 2 )  programed f o r  machine computation ( r e f .  9) w a s  used t o  
se lec t  optimum values of a l l  the  constants by an i t e r a t i v e  process of d i f f e r -  
e n t i a l  correct ions.  The curves shown i n  f igure 4 were obtained by f i t t i n g  
equation ( 2 )  t o  the  experimental da ta .  
t o  the experimental data  5s a measure of t he  r e l i a b i l i t y  of the s t a b i l i t y  
r e s u l t s .  The f i t t e d  curves f o r  a l l  the  f l i g h t s  analyzed in  t h i s  invest igat ion 
agreed with the  measured angles within the  measuring accuracy. 

The closeness of the computed curves 

The pitching-moment-curve slope, C&, was computed from the  wave length 
of o sc i l l a t ion  by means of 

where 

27[ A =  
4 T G  ( 4 )  

The dynamic - s t a b i l i t y  parameter, E ,  defined as 

8 



5 = CD - CL, + (Cmq + 

ql and V2 w a s  determined from the  constants by means of the  r e l a t ion  

5 

( 5 )  

It has been shown i n  references 9 and 10 t h a t  5 ,  i n  t he  form shown i n  equa- 
t i o n  ( 5 )  , i s  a convenient parameter f o r  describing the  dynamic s t a b i l i t y  of an 
unpowered vehicle i n  f r e e  f l i g h t  a t  constant a l t i t u d e .  The values of 5 pre- 
sented i n  t h i s  report ,  were obtained f rom equations ( 2 )  and ( 6 )  which assume a 
l inear  system over the  angle-of -attack range covered during any one f l i g h t .  
Each value of 5 , therefore  , i s  the  dynamic-stability parameter of an equiva- 
l en t  l inear  system whose amplitude of o sc i l l a t ion  would grow or diminish i n  
the  same way as t h a t  experienced by the  model. 

Rl3SULTS AND DISCUSSION 

The experimental r e s u l t s  of t h i s  investigation define the drag, s t a t i c -  
s tab i l i ty ,  and dynamic- s t a b i l i t y  charac te r i s t ics  of the configuration i n  the  
angle -of -attack range from 0' t o  bo0, a t  Mach numbers of 4.5, 9 .O, and 13.5 
i n  a gas mixture composed of 9-percent carbon dioxide and 91-percent nitrogen 
and a l so  i n  a i r .  CD, C%, and 5 ,  obtained from anal-  
y s i s  of 65 separate model f l i g h t s ,  are  summarized i n  t ab le  I .  
c i en t s  are based on the  maximum model diameter and f r o n t a l  area.  Values of 
om, oo and oms presented i n  t ab le  I indicate the  angle-of -attack range 
through which each model o sc i l l a t ed  during the f l i g h t .  Ful l -scale  enthalpy 
values were duplicated i n  these t e s t s  and, as s ta ted  e a r l i e r ,  at the  highest 
Mach number ( l3 .5) ,  the  heating r a t e s  were suf f ic ien t ly  high t o  cause ablat ion 
of the protective p l a s t i c  coating on the  models. These models survived the  
f l i g h t s  without s ign i f icant  change i n  surface shape. The e f f ec t s  of gas d i s -  
sociation and surface ablat ion cannot be isolated but are  implicit  i n  the  
experimental r e s u l t s .  &adowgraphs, t yp ica l  of those obtained i n  the  present 
t e s t s ,  are presented i n  f igures  5 and 6 t o  i l l u s t r a t e  gross fea tures  of the  
flow f i e l d s ,  pa r t i cu la r ly  the  bow-shock wave. m e o r e t i c a l  estimates of s t a t i c  
s t a b i l i t y  and drag made using conical flow theory ( r e f .  11) , and the  equations 
developed i n  reference 12, based on Newtonian impact theory, are compared with 
the  experimental r e s u l t s .  

The measured values of 
These coef f i -  

Drag Character is t ics  

The measured values of drag coeff ic ient  presented a s  a function of t he  
root-mean-square resu l tan t  angle of a t tack  i n  f igure  7 show t h a t  the  drag 
coeff ic ient  increases approximately 30 percent as the  angle of a t tack  i s  
increased from 0' t o  28O. 
range the  configuration exhibits the  same drag charac te r i s t ics  i n  a i r  as it 
does i n  the  carbon dioxide and nitrogen mixture. The drag coeff ic ient  i s  seen 

These data a l so  show t h a t  i n  t h i s  angle-of-attack 
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t o  decrease s l i g h t l y  (approximately 8 percent) as the  Mach number i s  increased 
from 4.5 t o  9.0 but i s  seen t o  remain constant,  within the  sca t t e r  of the  data, 
f o r  a fu r the r  increase i n  Mach number t o  13.5. Comparison of the  experimental 
r e s u l t s  with values calculated f o r  zero angle of a t tack  using conical-flow 
theory shows t h a t  although the  theory i s  i n  excel lent  agreement with the  exper- 
imental data  a t  Mach numbers 9.0 and 13.5, and predic t s  t he  correct  t rend with 
Mach number, t he  theory underestimates the  drag a t  Mach number 4.5 by about 
6.5 percent .  Estimates were made of t he  base-pressure contribution t o  the  
drag f o r  a l l  th ree  Mach numbers using a Prandtl-Meyer expansion around t h e  
base of t he  model and flow deflect ion angles measured from shadowgraphs simi- 
l a r  t o  those presented i n  f igures  5 and 6. These estimates i f  applied would 
r a i se  the  theo re t i ca l  values at Mach numbers 4.5, 9.0, and 13.5 by about 6.5, 
1.5, and 1 percent of t he  measured values, respectively,  and would r e su l t  i n  
excellent agreement with the  experimental r e s u l t s .  The e f f ec t  of angle of 
a t tack on drag i s  wel l  predicted by Newtonian flow theory.  

St a t  i c  -St ab i l i t y  Character i s t  i c  s 

The experimental values of t he  equivalent l i nea r  pitching-moment -curve 
slope, Cma, are  presented i n  f igure  8 as a function of t he  maximum resu l tan t  
angle of a t tack ,  Om. For a nonlinear system the  s t a b i l i t y  r e su l t s ,  unlike the  
drag r e su l t s ,  do not cor re la te  with arms so are  presented as functions of 
om, which i s  convenient f o r  the  fur ther  analysis  of the  data  by nonlinear 
methods. The data  have been corrected f o r  t he  var ia t ions  i n  center-of-gravity 
location shown i n  t ab le  I t o  a common center-of-gravity posi t ion,  0.72 d from 
the  nose. 
rect ions t o  t h e  da ta  of Mach number of 4.5 and 9.0 were s m a l l ,  usual ly  within 
4 percent ( t he  measuring accuracy of center-of-gravity pos i t i on ) .  
the  corrections t o  the  da ta  of Mach number 13.5 were on the order of 20 per-  
cent,  since,  as discussed e a r l i e r ,  at t h i s  Mach number the  models required a 
protect ive p l a s t i c  coating which caused t h e i r  centers  of gravi ty  t o  be a t  
0.733 d 

With the  exception of f l i g h t  number 853 (see tab le  I),  these cor- 

However, 

from the  nose (see f i g .  l ( b ) ) .  

The data ,  i n  f igure  8, show t h a t  the  configuration i s  s t a t i c a l l y  s tab le  
throughout the  angle -of -a t tack range investigated f o r  each Mach number. 
da ta  a l so  show t h a t  t h e  s t a t i c  s t a b i l i t y  i s  insens i t ive  t o  changes in  Mach 
number from 4.5 t o  9.0. 
13.5 shows t h a t  t he  combined influence of fu r the r  increasing the Mach number 
and introducing ablat ion i s  very s m a l l .  The in sens i t i v i ty  of the  s t a t i c  
s t a b i l i t y  t o  gas composition i s  a l so  demonstrated. The s t a b i l i t y  decreases 
with increasing angle of a t tack  which indicates  t h a t  t he  var ia t ion  of pi tching 
moment with angle of a t tack  i s  not l i nea r  f o r  t h i s  configuration. 

These 

Comparison of these da ta  with the  data  at Mach number 

Estimates of (2% at  zero angle of a t tack  calculated by means of conical- 
flow theory ( r e f .  11) and Newtonian theory ( r e f .  12) are  a lso included in  t h i s  
f igure .  
of a t tack)  with the  experimental da ta  shows both theor ies  underestimate the  
i n i t i a l  s t a b i l i t y  by about 20 percent.  

' 

Comparison of these theo re t i ca l  estimates (va l id  only a t  zero angle 
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Several methods are  available ( r e f s .  13  t o  17) which permit analysis of 
t he  observed pitching and yawing motions of a symmetrical body having a non- 
l inear  pitching moment t o  obtain C, as a function of a. The method of 
reference 17, developed under the  assumption t h a t  the  nonlinear moment can be 
described by an a rb i t r a ry  integer-power se r i e s  of the  resu l tan t  angle of 
a t tack,  w a s  used t o  analyze t h e  data obtained i n  the  present t e s t s .  Applica- 
t i o n  of t h i s  method t o  the  da ta  of t h i s  report  i s  discussed i n  appendix A .  

The l o c a l  var ia t ions  of pi tching moment with angle of a t tack,  extracted 
from the  experimental data  shown i n  f igure 8 by the  above procedure, are pre- 
sented i n  f igure  9 .  Examination of the  experimental da ta  at the  three  t e s t  
Mach numbers shows, as expected, t h a t  the  s t a b i l i t y  of t he  configuration i s  
l i t t l e  affected by changes i n  Mach number from 4.5 t o  13.5. 
increase i n  s t a b i l i t y  indicated at the  higher angles of a t tack  f o r  an increase 
i n  Mach number from 4.5 t o  9.0 could very wel l  be considered within the  accu- 
racy of the  experimental data  a t  these angles of a t tack .  The var ia t ion  of 
pitching moment with angle of a t tack  given by Newtonian theory and the  i n i t i a l  
slope calculated using conical-f l o w  theory are  a lso included i n  f igure 9 .  A s  
mentioned e a r l i e r ,  both theor ies  underestimate the  pitching moments at the  low 
angles of a t tack  by about 20 percent; however, Newtonian theory predicts  an 
almost l inear  var ia t ion  of Cm with a,; whereas the  experimental var ia t ion  i s  
seen t o  be s l i gh t ly  nonlinear with angle of a t tack .  The agreement between 
experiment and theory, therefore ,  improves with increasing angle of a t tack  and 
i s  considered close throughout the  en t i r e  angle -of -attack range of t h i s  
invest igat ion.  

The s m a l l  

Dynamic -S tab i l i ty  Character is t ics  

The r e s u l t s  of t he  dynamic-stability measurements are  presented i n  
f igure  10, where values of the  dynamic-stability parameter, E;, are plot ted as  
a function of the  maximum resu l tan t  angle of a t tack,  Om. Negative values of 
E; represent a convergent model motion (dynamic s t a b i l i t y ) .  These data  show 
t h a t  t he  configuration i s  dynamically s table  throughout the  angle-of -attack 
range investigated f o r  each Mach number and t h a t  it exhib i t s  the same dynamic 
s t a b i l i t y  i n  air as it does i n  the  carbon-dioxide--nitrogen mixture. These 
da ta  a l so  show tha t ,  within the  sca t t e r  of the data ,  the  values of E; remain 
constant with increasing angle of a t tack  and increasing Mach number. A value 
of E; of -2.0 i s  a reasonable average for most of the  data  i n  f igure  10, and 
i s  approximately equivalent t o  a convergence of about 7 percent per cycle.  
Examination of t he  data i n  f igure  10 shows an appreciable amount of s ca t t e r  i n  
the  values of E; obtained a t  a Mach number of 13.5 f o r  angles of a t tack  below 
10'. A t  these conditions, th ree  f l i g h t s  gave values of E close t o  -7.0, 
which i s  approximately equivalent t o  a convergence of about 22 percent per 
cycle, and one f l i g h t  gave a value of E; of about t-2.0, which i s  equivalent 
t o  a divergence of about 7 percent per cycle .  To determine the  la rges t  rea-  
sonable var ia t ion  i n  the  experimental values of E; f o r  these f l i g h t s ,  a 
probable e r ro r  of 0.25' i n  angle -of -attack measurements, determined s t a t i s t i -  
c a l l y  f r o m  many readings by several  observers, w a s  introduced t o  t he  input 
da ta  of these f l i g h t s .  These e r ro r s  i n  the  worst possible arrangements 
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changed the  values of 5 by l e s s  than 51.0. Therefore, these values of 5 
are  considered representative of the  ac tua l  damping cha rac t e r i s t i c s  experi-  
enced by the  models i n  these f l i g h t s .  

There are  several  f ac to r s  which might have contributed t o  the  sca t t e r  
of these da t a .  One such f ac to r  i s  of t he  poss ib i l i t y  of model damage. Calcu- 
l a t ions  indicate t h a t  the  stress a t  the  bimetal l ic  j o in t  of t he  models could 
have, under an unusually high accelerat ion launch, equalled the  compressive 
s t rength.  The shadowgraphs from a l l  the  f l i g h t s  at Mach number 13.5 under 
high magnification, showed no evidence of deformation a t  the  bimetal l ic  j o in t  
but a very s l igh t  discont inui ty  i n  the  bow-shock-wave angle of some of the  
models j u s t  ahead of the cylinder indicated there  were surface deformations. 
Although a compressive f a i l u r e  of the  titanium should not have caused t h i s  
discontinuity since the  s t r e s s  here should have been l e s s  than t h a t  at t he  
bimetal l ic  j o in t ,  t he  sabots which g r i p  t h i s  section of the  models (see 
f i g .  3 ( c ) )  could have caused s m a l l  i r r e g u l a r i t i e s  i n  the  p l a s t i c  coating. 
w a s  not possible,  however, t o  cor re la te  t h i s  e f f ec t  with the  values of E; 
which produced the  large s c a t t e r .  Another possible explanation i s  t h a t  t he  
sca t t e r  i s  due t o  e f f e c t s  of nonuniform ablat ion over t he  surface of some of 
the models and/or var ia t ions  i n  the  amount of ablat ion from f l i g h t  t o  f l i g h t .  
Mass addition in to  the  f l o w  f i e l d  about the  body which resul ted from ablat ion 
of the  p l a s t i c  i s  v i s ib l e  i n  the wakes i n  f igures  5 ( c )  and 6 ( c ) .  It has been 
shown i n  reference 18 t h a t  mass addition could cause large changes in  the  
s t a t i c  s t a b i l i t y ,  and consequently i n  the  dynamic s t a b i l i t y ,  of a body moving 
at hypersonic speeds and t h a t  these changes i n  s t a b i l i t y  increase with 
increasing mass addition and depend on the  angle of a t tack  of the body. For 
the present t e s t s ,  it w a s  inferred from the  experimental da ta  presented i n  
f igures  7 and 8 t h a t  ablat ion e f f ec t s  were not su f f i c i en t ly  large t o  s i g n i f i -  
cant ly  a f fec t  the  s t a t i c  s t a b i l i t y  and drag charac te r i s t ics  of the  configura- 
t ion ;  however, t he  dynamic s t a b i l i t y  might have been influenced. One other 
poss ib i l i t y  i s  t h a t  the  1-1/2 cycles of o sc i l l a t ion  z i t  Mach number 13.5 (see 
f i g  . 4) cons t i tu te  a minimal amount of motion f o r  defining the  dynamic - 
s t a b i l i t y  parameter when i s  s m a l l ,  especial ly  when "trim" i s  present .  
Some o r  a l l  of these p o s s i b i l i t i e s  could have contributed t o  the  sca t t e r  i n  
the  dynamic - s t a b i l i t y  r e su l t s  a t  t h i s  Mach number. 

It 

am 

Values of t he  damping-in-pitch der ivat ive,  Cmq f Cmk, were calculated by 
means of equation ( 5 )  using the  values of CD ( f i g .  7)  meas- 
ured from the present t e s t s ,  with values of 
theory, and are presented i n  f igure 11 as a function of am. These data  show 
the  same t rends as those observed f o r  t he  values of 5 i n  f igure  10, namely, 
constant dynamic s t a b i l i t y  f o r  the configuration throughout the  Mach number 
and angle-of-attack range invest igated.  It i s  in te res t ing  t o  note t h a t  t he  
values of Cmq + CmL have the  same sign as the corresponding values of 5 
and are about one-tenth as la rge .  Thus, as seen from equation ( 5 )  the  combi- 
nation of a s t ab i l i z ing  l i f t -curve  slope (pos i t ive  value of CL,) and the  
st  ab i l i z  ing damping -in -pitch der ivat  ive over shadow the  de s t ab i l i z ing  cont r i  - 
bution of drag t o  produce a convergent motion i n  constant speed f l i g h t  a t  
constant a l t i t ude  . 

5 ( f i g .  10) and 
CL, estimated by conical-flow 
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S t a b i l i t y  Character is t ics  f o r  Large Amplitudes of Osci l la t ion 

The present configuration i s  intended t o  be s t a t i c a l l y  stable about only 
one trim a t t i t ude ,  nose forward about zero angle of a t t ack .  Although experi-  
mental measurement of t he  amount of s t a t i c  i n s t a b i l i t y  (pos i t ive  value of 
Cm,) provided f o r  i n  the  design of the  configuration about t he  base-forward 
trim a t t i t ude  of 180' w a s  beyond the  scope of the  present investigation, two 
exploratory f l i g h t s  were made with the  models iaunched backward t o  determine 
whether they would remain f ly ing  backward or, as expected from calculations,  
would begin r ight ing themselves t o  a nose-forward a t t i t u d e .  The models were 
launched a t  an i n i t i a l  angle of a t tack  near 180' (see f i g .  3 (d) )  a t  t he  same 
t e s t  conditions mentioned previously f o r  t he  other f l i g h t s  a t  Mach number 9.0, 
namely, nominal model veloci ty  of 3 .O5 km/sec and t e s t - sec t ion  s t a t i c  pressure 
of k104 newton/m2 (300 mm of mercury). 

The measured time h is tory  of t he  angular or ientat ion f o r  one of these 
f l i g h t s  ( f l i g h t  703), presented i n  f igure  12, shows t h a t  although there  w a s  
only about one -half cycle of o sc i l l a t ion  i n  the  available 12.2-meter-length 
t e s t  section, the  model did not remain i n  the  base-forward or ientat ion and did 
not tumble but achieved a nose-forward or ien ta t ion  and appeared t o  be o s c i l -  
l a t i ng  about zero angle of a t tack  with amplitudes of o sc i l l a t ion  as large as  
1 6 5 O .  This r e su l t  indicates  t h a t  the  configuration i s  s t a t i c a l l y  s table  only 
about the  nose-forward trim a t t i t u d e  of zero angle of a t t ack .  Another i n t e r -  
es t ing  and important poss ib i l i t y  i s  suggested by t h i s  r e su l t  and by the  b o w l -  
edge t h a t  f o r  f l i g h t  at constant or s l igh t ly  decreasing dynamic pressure a 
model having negative or neu t ra l  dynamic s t a b i l i t y  would be expected t o  
tumble. Since the  model i n  t h i s  f l i g h t  did not tumble, it i s  indicated t h a t  
t he  dynamic - s t a b i l i t y  cha rac t e r i s t i c s  of t he  configuration, over t h i s  large - 
amplitude range, are  such as t o  produce a convergent motion. 

To invest igate  the  dynamic - s t a b i l i t y  charac te r i s t ics  of t he  configuration 
over t h i s  large-amplitude range and t o  substant ia te  t he  r e su l t  of f l i g h t  703 
t h a t  the  configuration has a unique nose-forward s table  a t t i t ude ,  the  second 
f l i g h t  ( f l i g h t  663) w a s  conducted i n  the  Ames Pressurized B a l l i s t i c  Range 
( i n  a i r )  which enabled the t r a j ec to ry  of t he  model t o  be recorded over a 
62-meter length i n  24 shadowgraph s ta t ions ,  thus providing several  cycles of 
o sc i l l a t ion .  The measured time h is tory  of the angular or ientat ion f o r  t h i s  
f l i g h t  presented i n  f igure 13, along with t h a t  of f l i g h t  703, shows, as  did 
f l i g h t  703, that  the model did not remain i n  the  base-forward or ientat ion and 
d i d  not tumble but again achieved a nose-forward or ien ta t ion  and osc i l la ted  
about zero angle of a t tack  with large amplitudes of o s c i l l a t i o n .  
be noted t h a t  t he  model experienced about a 68-percent decrease i n  dynamic 
pressure during t h i s  f l i g h t  .) Further examination of the  experimental data  i n  
t h i s  f igure  shows t h a t  although the  time h is tory  f o r  f l i g h t  663 i s  not as well  
defined as t h a t  f o r  f l i g h t  7 0 3 , l t h e  model i n  t h i s  f l i g h t  achieved almost 
exact ly  the  same peak amplitude a t  the  f i rs t  peak of o sc i l l a t ion  as did the  

(It should 

~~ - _ -  - ~ - 

=Although the  wave length of o sc i l l a t ion  w a s  approximately the  same f o r  
both f l i g h t s  t he  observation s t a t ions  i n  the  PHFF f a c i l i t y  are  spaced at 
1.22-meter in te rva ls  while t he  shortest  spacing between the  observation 
s ta t ions  i n  the  PBR i s  2.13 meters. 
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model i n  f l i g h t  703. This almost exact duplication of t he  motions f o r  both 
f l i g h t s  provides strong experimental evidence t h a t  the  configuration i s  s ta t i -  
c a l l y  unstable about t he  trim angle of a t tack  of  180' and w i l l  begin t o  over- 
tu rn ,  immediately, t o  a nose-forward or ien ta t ion  and osci l lake about i t s  
unique s tab le  trim a t t i t u d e  of zero angle of a t tack .  Since evaluation of the  
s t a b i l i t y  der iva t ives  from analysis  of t he  high-amplitude experimental da ta  of 
f l i g h t  663 could not be accomplished using the  method presented e a r l i e r  
( r e f .  8) t o  ex t rac t  these der ivat ives  from low-amplitude motions, an attempt 
was made t o  generate a theo re t i ca l  motion which would provide a good f i t  t o  
the  experimental da t a  and allow the  desired s t a b i l i t y  der ivat ives  t o  be 
infer red .  The d i f f e r e n t i a l  equation of motion of a missi le  o sc i l l a t ing  i n  
p i t ch  at constant a l t i t u d e  ( see  r e f .  10) , wri t ten  with respect t o  time as 

where 

was programmed f o r  numerical integrat ion by a computer. 
i t e r a t ed  upon t o  obtain the  best  match t o  the  experimental da ta .  The time 
var ia t ion  of pi tching moment with angle of a t tack  given by Newtonian theory, 
the  time var ia t ions  of dynamic pressure and ve loc i ty  measured f o r  t h i s  f l i g h t ,  
along with various values of k, were used as inputs f o r  these calculat ions.  
These calculat ions were i n i t i a t e d  a t  the  f i rs t  peak value of a, 1 6 4 O ,  where 
the  value of & i s  zero.  The theo re t i ca l  motion obtained in  t h i s  manner 
which best  f i t  t he  experimental data  i s  presented i n  f igure  13 and i s  seen t o  
be an excellent representation of the ac tua l  motion experienced by the  model 
during t h i s  f l i g h t .  This excel lent  agreement between the  theo re t i ca l  motion 
and the  experimental da ta  indicates  t h a t  t he  pi tching moments predicted by 
Newtonian theory f o r  t h i s  configuration are  very close t o  the  ac tua l  pitching 
moments experienced by the  model throughout t he  angle-of -attack range from 0' 
t o  BO0. (It should be noted t h a t  according t o  Newtonian theory the configu- 
ra t ion  i s  s table  only i n  the  nose-forward a t t i t u d e . )  Further examination of 
the  da ta  presented i n  f igure  13 shows t h a t  the  theo re t i ca l  motion i s  conver- 
gent ( t he  value of kl w a s  -1.15 and, as can be seen, i s  equivalent t o  a 
convergence of about 4 percent per  cyc le) ,  which indicates  t ha t  the  configu- 
r a t ion  i s  dynamically s tab le ,  about zero angle of a t tack,  throughout the 
e n t i r e  angle-of-attack range from 0' t o  180°. 

Equation (7 )  was 

Application of  the Present Results t o  a Ful l -scale  Vehicle 
Passively Entering the  Atmosphere of Venus 

To determine the  significance of the  present r e su l t s  when applied t o  a 
fu l l - sca le  vehicle passively entering a planetary atmosphere, calculat ions 
were made of the  osc i l l a to ry  behavior of the  present configuration, i n i t i a l l y  
oriented base forward, f ly ing  an example en t ry  t r a j ec to ry  through a model of 
the  Venusian atmosphere. Studies of the osc i l l a to ry  behavior of missi les  
entering the  atmosphere on b a l l i s t i c  t r a j e c t o r i e s  ( r e f .  19) have shown t h a t  
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t he  rapid increase i n  atmospheric density experienced by such vehicles 
strongly damps t h e i r  o sc i l l a t ions .  
t o r i e s  were considered: 
which corresponds t o  a steep entry; and the other using a y i  of 40°. These 
values f o r  7-i 
compute the  entry t r a j e c t o r i e s  f o r  t h i s  example: 

For the  present example, two entry t r a j e c -  
one, using an i n i t i a l  f l igh t -pa th  angle, 7: of 890 

and the  following assumed i n i t i a l  conditions were used t o  

vi = 11.43 h / s e c  

xi = 160 ktn 

m/CDA = 156.8 kg/m2 

The atmosphere used i n  these estimates w a s  one selected on the  bas i s  of in for -  
mation presented i n  reference 20. A s  shown i n  reference 21, t h i s  atmosphere 
can be closely approximated by the  well-known assumption t h a t  the  atmospheric 
density var ies  exponentially with a l t i t ude  

f o r  the  a l t i t udes  between 160 km and 40 km ( the  a l t i t udes  of i n t e re s t  i n  t he  
present example). This assumption and the  following corresponding v a h e s  of 
these parameters f o r  Venus (see r e f .  21) were applied t o  the  present example: 

& = 1.58X10-4 per  m 

These conditions define the  en t ry  t r a j e c t o r i e s  considered. Some of t he  t ra -  
jectory parameters, namely, the var ia t ions  of ve loc i ty  and dynamic pressure 
with a l t i t ude ,  were computed using the above conditions i n  equations derived 
i n  reference 22 and are presented in  f igure  14. 
f igure  t h a t  maximum dynamic pressure occurs a t  an a l t i t ude  close t o  65 km f o r  
both t r a j e c t o r i e s .  

It can be seen f rom t h i s  

Analyses which describe the  osc i l l a to ry  motions developed by vehicles as 
they descend through a planetary atmosphere are presented i n  references 23 
and 24. 
t i a l  angle of a t tack  (nose forward or base forward) but assumes the  aerody- 
namic damping of the  vehicle t o  be zero. The analysis  presented i n  
reference 24 a l l o w s  f o r  aerodynamic damping of the  vehicle but assumes con- 
s tan t  aerodynamic coef f ic ien ts  which requires the  vehicle t o  be i n i t i a l l y  
oriented nose forward a t  a low angle of a t t ack .  Since the  vehicle,  f o r  the  
present example, i s  t o  en ter  t he  Venusian atmosphere i n i t i a l l y  oriented base 
forward, the aaalysis  of reference 23 w a s  used t o  describe the osc i l la tory  
motions f o r  t he  portion of the  t r a j ec to ry  f o r  which the  aerod.ynamic damping of 
the  vehicle could, i n  f a c t ,  be considered negl igible  compared t o  damping due 
t o  increasing dynamic pressure (see r e f .  19). 
c l e  t o  be oriented nose forward and osc i l l a t ing  at low angles of a t tack  a t  a 
point i n  the  t r a j ec to ry  p r io r  t o  reaching qmax. It was therefore possible t o  
use reference 24 t o  determine the  e f f ec t  of the  measured damping on vehicle 
motions f o r  the  remainder of t he  t r a j ec to ry .  

The analysis presented i n  reference 23 a,llows for an arb i t ra ry  i n i -  

This analysis  showed the  vehi- 

I 



l111l1l111l11 Ill1 1l1ll1lllI I 

Reference 23 shows t h a t  under the  assumptions made i n  the  analysis  t h e  
envelope of these osc i l l a t ions ,  expressed in  t e r m s  of s ign i f icant  vehicle and 
planetary propert ies ,  can be wri t ten as 

For t he  present examples, the  vehicle w a s  assumed t o  be i n i t i a l l y  oriented 
base forward at an angle of a t tack  of 17g0, with zero i n i t i a l  p i t ch  rate, 
which gives values of t he  parameters 
t i v e l y .  (The parameters C and G are  dependent on the  i n i t i a l  angle of' 
a t tack  and i n i t i a l  p i t ch  r a t e  assumed and cannot be evaluated exp l i c i t l y ;  
t h e i r  values are determined from char t s  presented i n  reference 23.)  The 
following physical propert ies  of the  vehicle were assumed 

C and G of 0.796 and 0.0215, respec- 

A = 0.771 m2 

d = 1.0 m 

Iy = 6.44 kg-m2 

m = 6.66 kg 

CD = 0.55 

= -0.0835 '"ax 

where 
Newtonian theory.  
are presented in  f igure  15 as a function of a l t i t u d e .  The r e su l t s  i n  t h i s  
f igure show t h a t  f o r  t h a t  portion of the  en t ry  p r i o r  t o  
f o r  both en t r i e s ,  converge very rapidly so t h a t  at the  a l t i t udes  where heating 
i s  most severe (between 80 km and 65 km, see f i g .  14), the  amplitudes of 
o sc i l l a t ion  of t h e  vehicle are  l e s s  than 35'. 
f o r  the a l t i t udes  subsequent t o  
namic damping of t he  vehicle i s  zero predic t s  highly divergent motions. How- 
ever, as  w a s  shown i n  f igure  10, the present configuration possesses posi t ive 
aerodynamic damping and the  e f f ec t  of t h i s  pos i t ive  damping on the  osc i l l a to ry  
motions must be included i n  the analysis .  

Cmm, i s  the  maximum value of pi tching moment estimated using 
Values of the  envelopes of o sc i l l a t ions ,  ( a)env, computed 

qmax the  motions, 

These r e s u l t s  a l so  show t h a t  
qma,, an analysis  which assumes the  aerody- 

Reference 24 shows t h a t  f o r  constant aerodynamic der ivat ives  the  envelope 
of o sc i l l a t ions  has the  simple form 

-K/ 2 c,u 
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It a lso  has been shown i n  t h i s  reference t h a t  the dynamic - s t a b i l i t y  parameter 
K,  i n  the  form 

i s  a convenient parameter f o r  describing the  dynamic s t a b i l i t y  of a vehicle 
descending through a planetary atmosphere. It can be seen from a comparison of 
equations ( 5 )  and (11) t h a t  K can be expressed i n  terms of 6 and CD as  
follows 

K = - -  
CD 

Values of K computed f romthe  measured values of 5 ( f i g .  10) and CD 
( f i g .  7)  are  presented i n  f igure  16 as a function of Om. From these da ta  it 
w a s  considered t h a t  a value of K of -3.0 would be a conservative mean value 
t o  use i n  equation ( 1 0 ) .  This value of K and the  example en t ry  t r a j e c t o r i e s  
presented e a r l i e r  were introduced in to  equation (10) , expressed i n  r a t i o  form, 
and values of the  amplitude r a t i o ,  (a/q)max, were computed. 
t i ons  were i n i t i a t e d  at an a l t i t ude  of 80 Inn, s ince,  as  can be seen from f i g -  
ure 15, the  osc i l la tory  angles of a t tack  of the  vehicle below t h i s  a l t i t ude  
are  l e s s  than 36O and, as demonstrated in  f igures  9 and 16, t he  aerodynamic 
der ivat ives  of the  configuration can be considered reasonably constant i n  t h i s  
angle-of-attack range. Values of (a)env were computed f rom the  r a t i o  
( d a i  ) max using the  angles of a t tack  a t  80 lan given by the  analysis of r e f e r -  
ence 23 as i n i t i a l  angles of a t tack  (360 f o r  the  
the These r e su l t s  show t h a t  a t  
a l t i t udes  below tha t  for t he  e f f ec t  of the  measured aerodynamic damping 
of the  configuration overshadows the  e f f ec t  of decreasing dynamic pressure t o  
produce a strongly convergent motion. The amplitudes of o sc i l l a t ion  at an 
a l t i t ude  of 56 Inn f o r  both examples are seen t o  be l e s s  than 5 O .  Therefore , 
f rom these calculations it i s  indicated t h a t  the present configuration, i n i -  
t i a l l y  oriented nose forward o r  base forward, should experience highly conver- 
gent pitching osc i l l a t ions  during en t ry  in to  the postulated atmosphere of 
Venus. 

These calcula-  

7-i = 89' case and 30' f o r  
yi  = 40° case) and are presented i n  f igure 15. 

qmax 

SLTMMARY OF ESULTS 

The r e s u l t s  of an experimental investigation t o  determine the  s t a b i l i t y  
and drag charac te r i s t ics  of a conical configuration at Mach numbers of 4.5, 
9.0, and 13.5 and Rzynolds numbers from 0.4 t o  1 .2  mill ion i n  a Nz-COz mix- 
tu re  and i n  a i r  are  as f o l l o w s :  

1. The s t a t i c  s t a b i l i t y ,  dynamic s t a b i l i t y ,  and drag of t he  configura- 
t i o n  are  the  same i n  air  a s  i n  a gas mixture composed of 9-percent carbon 
dioxide and 91-percent nitrogen f o r  t he  en t i r e  range of Mach numbers and 
angles of a t tack  of t h i s  invest igat ion.  



Ill I l l  I I1 

2. The configuration i s  s t a t i c a l l y  s tab le  about an angle of a t tack of 0' 
(nose-forward or ien ta t ion)  f o r  t he  assumed location of center of gravi ty ,  
0.72 d from the  nose. Strong evidence i s  presented which shows t h a t  the  
configuration i s  s t a t i c a l l y  unstable about a t r im angle of a t tack of 180° 
(base-forward o r i en ta t ion ) ,  so t h a t ,  i f  i n i t i a l l y  oriented base forward, it 
w i l l  reor ient  i t s e l f  t o  a nose-forward a t t i t u d e .  The s t a t i c  s t a b i l i t y  i s  
e s sen t i a l ly  invariant  with Mach number and s l i g h t l y  nonlinear with angle of 
a t tack  in  the  angle range up t o  40'. 

3.  The nonlinear var ia t ion  of pitching moment with angle of a t tack  was 
closely approximated by a two-term power se r i e s  of the  resu l tan t  angle of 
a t tack .  

4. The configuration i s  dynamically s tab le  f o r  steady f l i g h t  at constant 
a l t i t ude .  For t h i s  condition and f o r  i n i t i a l  amplitudes of o sc i l l a t ion  as  
high as  40°, t he  models experienced pitching motions which converged at the  
r a t e  of about 7 percent per cycle.  A l s o ,  there  i s  strong indication t h a t  the  
configuration i s  dynamically s table  a t  pitching amplitudes approaching 180' so 
t h a t  it w i l l  o s c i l l a t e  about the  nose-forward s table  a t t i t ude  with diminishing 
amplitude of o sc i l l a t ion .  Analysis of t he  large amplitude osc i l l a t ions  of a 
model concurrently experiencing a rapid decrease in  dynamic pressure with time 
showed a convergence of about 4 percent per cycle.  

5 .  The drag coeff ic ient  of t he  configuration decreases approximately 8 
percent f o r  an increase i n  Mach number f rom 4.5 t o  9.0 but remains constant 
f o r  a fur ther  increase i n  Mach number t o  13.5. The drag increases approxi- 
mately 30 percent, f o r  each Mach number, as the angle of a t tack  i s  increased 
from 0' t o  about 28'. 

6. The var ia t ion  of pitching moment with angle of a t tack given by 
Newtonian theory i s  i n  close agreement with the  measured var ia t ion  f o r  the 
angle-of -attack range from 0' t o  about 36O, although Newtonian theory and 
conical-flow theory underestimate the i n i t i a l  slope by about 20 percent.  
Furthermore, it i s  indicated t h a t  Newtonian theory gives close estimates of 
the  pitching moments of t h i s  configuration f o r  the  en t i r e  angle-of -attack 
range from Oo t o  180'. The drag of the  configuration w a s  accurately estimated 
by conical-flow theory a t  zero angle of a t tack and w a s  c losely approximated by 
Newtonian theory f o r  t he  angle-of-attack range investigated,  0' t o  about 28O. 

7.  Calculations indicate  t h a t  the  measured s t a b i l i t y  charac te r i s t ics  

For any i n i t i a l  or ientat ion of the  vehicle 
of the  present configuration should be adequate f o r  or ient ing the  vehicle 
properly during a Venus entry.  
(nose forward o r  base forward) the  pitching motions should converge t o  a very 
s m a l l  f r ac t ion  of the  amplitude at en t ry .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif ., Dee. 18, 1964 
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APPENDIX A 

APPLICATION OF NONLINEAR PITCHING-MOMENT ANALYSIS 

A method which permits analysis  of t h e  pitching and yawing motions of a 
spinning symmetrical body having a nonlinear pitching moment t o  obtain the 
pitching moment as a function of angle of a t tack  i s  described i n  reference 17. 
The method allows f o r  a more general  reduction of f r ee - f l i gh t  da ta  by assuming 
t h a t  the restor ing moment can be described by an arbi t raqy power se r i e s  of the  
resu l tan t  angle of a t tack,  of the  form 

co 
m 

M( 0 )  = - 
n=o 

where 

A simple expression i s  then derived which r e l a t e s  the  frequency of osci l la t ion,  
W, obtained from data analysis  with l inear  equations, t o  the  maximum and mini- 
mum amplitudes f o r  an i n f i n i t e  number of possible moment combinations. This 
expression, which includes the nonlinear i n e r t i a l  terms due t o  spin, i s  (see 
r e f .  .17) P 1 

2 

By use of t h i s  expression, values of the  restoring-moment coef f ic ien ts ,  M,, 
can be obtained f r o m  the  observed frequencies of o sc i l l a t ion  and amplitudes of 
independent f l i g h t s  of the  models at similar f l i g h t  conditions but with d i f fe r -  
ent  amplitudes of o sc i l l a t ion .  Equation (A3), as discussed i n  reference 1.7, 
i s  an approximate solution which becomes exact i n  t h e  l imi t  of circularmotion, 
t h a t  i s ,  equal p i t ch  and yaw, 90' out of phase and i s  l e a s t  accurate f o r  the 
case of planar motion. 
motions t o  be analyzed f o r  the  present invest igat ion are  f a i r l y  planar .  How- 
ever, the  appl icabi l i ty  of the  method t o  t he  case of planar motion w a s  
examined i n  reference 17 f o r  ce r t a in  assumed moment representations f o r  which 
exact solutions a re  possible . Comparison showed t h a t  the  approximate solut ion 
(eq.  ( A 3 ) )  gives r e s u l t s  extremely close t o  the  r e s u l t s  obtained f rom exact 
solut ions.  Further comparison i n  reference 17 shows, again f o r  t he  case of 
planar motion, t h a t  the  approximate solut ion gives r e s u l t s  t h a t  are ,  f o r  the  
most p a r t ,  more accurate than r e s u l t s  obtained by the  technique of r e f e r -  
ence 13. Therefore, a high degree of confidence i n  the  appl icabi l i ty  of t h i s  
method t o  the  data  of t h i s  report  i s  j u s t i f i e d .  

A s  can be seen from examination of f igure  4,  the  

I 



Application of the  method t o  the  present experimental da ta  w a s  
Equation ( A 3 ) ,  which allows f o r  an accomplished i n  the  following manner. 

i n f i n i t e  number of possible moment combinations, w a s  l imited,  from p rac t i ca l  
considerations, t o  t he  f irst  seven terms wr i t ten  as 

(For convenience, since values of 
of the  experimental data ,  t he  subs t i tu t ion  
equation (Ab).) An examination of the  experimental da ta  i n  f igure  8 indicated 
t h a t  the  nonl inear i t ies  could not be considered large; therefore ,  it w a s  
decided t h a t  a two- o r  three-term moment i n  the  resu l tan t  angle of a t tack  
would adequately represent the  moment curve. 
machine computation so t h a t  a l l  possible moment combinations, each containing 
the  l inear  term, k, plus one and t w o  members of the  se t  ( M 1 ,  M2, &, M4, M,, 
& )  were f i t t e d  t o  the  data  by the method of l e a s t  squares. 
presented i n  f igure  17, which shows the  pitching-moment curves given by the 
various assumed moment representations t h a t  best  f i t  the  experimental data  f o r  
each Mach number. The l inear  plus  cubic pitching-moment curves are a l s o  
included i n  t h i s  f i gu re .  (These pitching-moment curves are  the same as would 
be obtained by the  method of reference 15, which develops t h i s  case exclu- 
s ive ly . )  It i s  evident from these r e s u l t s  t h a t  f o r  the  angle-of-attack range 
investigated the  moment curves given by the  bes t  t w o -  and three-term moment 
approximations f o r  a pa r t i cu la r  Mach number are  close enough together t h a t  it 
i s  unnecessary t o  choose between them. Furthermore, since the  r e su l t s  show 
t h a t  the  nonlinear pitching moment can be closely approximated by the  simplest 
of the  moment representations t r i e d ,  namely, a two-term moment representation, 
the  appl icabi l i ty  of the  method t o  the  data  of t h i s  report  r e s t s  on the  
approximate l i nea r  re la t ionship of Cm, 
tudes of the  motion. Therefore, i n  order t o  determine the  va l id i ty  of t h i s  
assumption, values of Cma were p lo t ted  as a function of the  appropriate I 

amplitude term given i n  equation ( A b )  f o r  a one-three moment representation at 

Cm, are  avai lable  from t h e  l i nea r  analysis 
W2 = (qAd/Iy)&, w a s  made i n  

Equation (A4) was programmed f o r  

The r e s u l t s  are 

with t h e  maximum and minimum ampli- 
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Mach number 4.5 and f o r  a one-four moment representation at Mach numbers 9.0 
and 13.5 f o r  each f l i g h t  and are presented i n  f igure  18. It i s  evident from 
t h i s  f igure  t h a t  t he  da ta  f a l l  very closely along s t r a igh t  l i n e s  f o r  each 
Mach number and, therefore ,  the  pa r t i cu la r  two-term moment representations of 
the  method are excellent approximations. 
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Figure 1.- Sketches of models showing nominal dimensions. 
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Figure 2.- Shadowgraphs showing negligible t i p  blunting on ablating plastic-coated models; M = 13.3. 



(a) Model with s t ra ight  sabot. (b) Model with canted sabot. 

( c )  Plastic-coated model with s t ra ight  sabot. (d)  Model with sabot fo r  base-forward launch. 
nl 
\D Figure 3.- Photographs of models and sabots. 
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(a)  Flight 848; M = 4.5 (b)  Flight 951; M = 4.3 

Figure 4.- Typical pitching and yawing motions produced by the  models. 
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( c )  Flight 806; M = 9.0 (a) Flight 809; M = 9.0 

Figure 4. - Continued . 
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( e )  Flight 987; M = 13.3 ( f )  Flight 983; M = 13.5 

Figure 4. - Concluded. 
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(a) M = 4.5 

(b) M = 9.0 

Figure 3 . -  Shadowgraphs showing flow-field phenomena of models f lying i n  a 
9-percent carbon dioxide, 91-percent nitrogen mixture. 
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= 4.5 

(b) M = 9.0 

( c )  M = 13.5 

Figure 6 .- Shadowgraphs showing f low-field phenomena of  models f l y i n g  i n  a i r .  
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(a) M = 4.5 

- 

(b) M = 9.0 

( c )  M = 13.5 

Figure 5.- Shadowgraphs showing flow-field phenomena of models f lying i n  a 
9-percent carbon dioxide, 91-percent nitrogen mixture. 
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